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Abstract

This report is a tutorial exposition of two broad classes
of strapdown and local level inertial navigation systems, which
perform their navigational computations in the local geographic
coordinate frame, The strapdown chapter includes discussions of
the direction cosine update procedure, alignment techniques and
instrument redundancy. An analysis of error sources peculiar to
the strapdown mechanization is followed by a perturbation type
error analysis which shows that the basic error equations are
identical to those which describe the behavior of the local level
platform system. The error analysis of the local level system
is followed by a rather complete set of analytic and computer
solutions for both the stationary and moving navigation cases.
The effect of the Foucault mode on the validity of the analytic
solutions is discussed. The results of the error analysis are

applicable to both navigation system mechanizations,
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STRAPDOWN INERTIAL NAVIGATION SYSTEM

Introduction

Strapdown systems are characterized by their lack of gimbal
support structure. The system is mechanized by mounting three
gyros and three accelerometers directly to the vehicle for which
the navigation function is to be provided. An onboard digital
computer keeps track of the vehicle's attitude with respect to
some reference frame based on information from the gyros. The
computer is thus able to provide the coordinate transformation
necessary to coordinatize the accelerometer outputs in a refer-
ence frame. Navigation computations proceed in exactly the same
fashion as for the platform systems discussed previously.

Conceptually, the system is no more complicated than those
which have been studied previously. Figure 1.1 shows a func-
tional block diagram for a typical strapdown system. Note that
the navigational computations can take place in either geographic
coordinates or inertial coordinates, depending on the application.
For airborne applications, altimeter error sensitivity considera-
tions would make it seem reasonable to compute in geographic
coordinates. Thus a strapdown inertial navigation system which
computes in geographic coordinates will be considered herein.

) }—————> Velocit
Body EP o QF Navigation Positi o
Mounted C —————> Position
elerometers tﬁ}- Computer ——————> Attitude
wb
Body -~ib
Mounted
Gyros

Figurel.l ~ Strapdown System Functional Diagram
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Many arguments are heard, both pro and con, concerning the
viability of strapdown systems. Weight and size comparisons
between strapdown and gimbal systems involve a trade-off between
a more extensive computer for the strapdown system versus the
gimbal structure for the conventional system. With the advent
of microcircuits, the advantage of the strapdown system would
appear to be increasing. The strapdown system also would appear
to have a definite advantage over the gimbal system in terms of
power consumption, packaging flexibility, ease of maintenance,
and perhaps cost. It should be pointed out, however, that those
considerations should be weighed according to accuracy. Strap-
down systems are not yet capable of competing with conventional
systems in applications where accuracy is the primary criterion
of excellence. From a reliability standpoint, it would seem
that the binary devices in a strapdown system would be less
susceptible to such factors as line voltage variations, power
supply transients, etc. Since the strapdown sensors remain fixed
with respect to the vehicle, one would expect that the environ-
mental control problem would be eased considerably.

The major disadvantage of the strapdown system is summarized
with one word--inaccuracy. The instruments are subjected to a
relatively harsh dynamic environment since the gimbal structure
no longer isolates the sensors from the angular motion and vibra-
tions of the vehicle. Because of this different environment,
the instruments must be designed with a larger dynamic range,
which usually results in a compromise in accuracy. It should be
pointed out, however, that most testing to date has been done
with instruments that were designed for use in gimballed systems.
Current design research toward the development of sensors which
have improved performance in the strapdown environment may alter
the current "accuracy gap" which exists between gimballed and
strapdown systems.

To illustrate how the instruments will be affected by the
strapdown environment, take the case of a single degree of freedom
floated integrating gyro. The output of such an instrument is



given by Reference 5 as:

(Tg p + l)Ag = 5%; (wIA - W, - Ag Wgna + (Ww) - Tg Woa

where

Tg n Time constant of gyro

P n~ Differential operator ° %E

Ag A Gyro output angle

H A Spin angular momentum

Cg n Damping coefficient

Wra v Input axis angular velocity

W, " Command angular velocity

Wepn ~ Spin reference axis angular velocity

(u)w ~ Uncertainty angular velocity

w n Output axis angular velocity

OA

The gyro equation can be rearranged in the signal flow diagram

shown in figure 1.2

W | Rate Gyro Mode _ _
oA |
!
%( Multiplier
SRA ] 1 A
1 g
E T_ p+l >
i
dw !
1 AL -
- - — 55— - -
P )

Space Integrator Mode
Figure 1.2~ Signal Flow Diagram for Integrating Gyro
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As indicated on the diaqram, the gyro can be used in either of
two modes, the space integrator mode or the rate gyro mode. If
we instrument as a space integrator, the appropriate gimbal is
torqued with a signal proportional to Ag, driving Wra to zero.
It is evident that in steady state:

Wrp = - (u)w,
Ag being driven to zero. Note that the accuracy in applying the
torque to the gimbal has no effect on the final result. Moreover,
if the gyro is visualized as being mounted on an uncommanded space
integrator,

“op = “sra = Yra % 0
if gyro drift is neglected.
If, on the other hand, we instrument as a rate gyro applying
a signal to the gyro torqgue generator proportional to Ag, we
require that in steady state:

Bmc
+ (Ww = == A
dA
g g

“ra

We see then that the uncertainty in awc/aAg, that is, our knowledge
of the torquer sensitivity, is of crucial importance in deter-
Furthermore, if the instrument is body mounted, one

mining wp,.

has the linear disturbance input equal to 1 and the non-

b “oa

linear disturbance input due to A_ w The linear disturbance

is compensated, while the nonlinegr g?ﬁturbance is minimized by
keeping Ag small through servo design techniques.

A significant gyro proklem that arises due to the strapdown
environment is called input~gspin rate rectification. This pro-
blem is a manifestation of the nonlinear disturkance phenomenon
mentioned in the previous paragraph. One can see from figure (21)
that, if Ag and WgraA
input angular velocity will be sensed. This effect can be quite

are oscillating simultaneously, a spurious

large, depending on the frequency of vibration.
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In addition to the problems that arise due to the cross-
coupling effects mentioned above, vibration-induced errors are
likely to be quite troublesome for strapdown gyros. These errors
mainly result from the anisoelastic properties of the gyro float.
In general, torquing is applied to the gyroscopes to compensate
for this inherent deterministic drift via the following equation
(Ref. 6):

T = B. + £ - M £ + (K - K )£ £. , k=x,v, z
ko Tk Mks ks Ky Ry kg TkpiTkp kg
where
Tk ~ commanded torque to kth gyro
B n~ bias torque coefficient for kth gyro

M ~ mass unbalance torque coefficient along spin axis for

s kth gyro

Mk A~ mass unbalance torque coefficient along input axis for

I kth gyro
e . . th
fk ~ specific force along input axis of k gyro
I
s e . - th
fk ~ specific force along spin axis of k gyro
s

K A anisoelastic torque coefficient along spin axis of

S kth gyro

K A~ anisoelastic torque coefficient along input axis of
I kth gyro
In the above equation, the so-called "cross compliance" terms have
been excluded. Depending on the application and the quality of

the gyroscopes, these terms might have to be included. The terms

in the T, expression must, in general, be calculated and introduced

k
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as compensation terms. The problems inherent in computing and
applying the compensation are discussed in Reference 7.

Because of the difficulty in applying the compensation, vibratory
effects are usually beyond the bandwidth of the compensating sys-
tem,

Such effects as mentioned above must be considered in the
design of any inertial system. For the strapdown system, environ-
mental considerations are likely to consume a high percentage of
the design time. The reader is referred to Ref, 8 for a more

complete exposition of this subject.



1.2 Description of System

As mentioned previously, the inertial sensors of a strap-
down system are mounted directly to the vehicle. The accelero-
meters and gyroscopes are typically mounted in a mutually ortho-
gonal fashion, although in certain cases where reliability is
of utmost importance extra instruments are added to form a
nonorthogonal cluster of four instruments. Thus the fourth
instrument is capable of taking the place of any instrument
in the orthogonal set which fails. 1In addition, the output
of the fourth instrument can be continuously used for averaging
purposes.

In any case, the outputs of the accelerometers, suitably
coordinatized and averaged, are equal to the nonfield specific
force coordinatized in body axes:s

£=c @ -gh (1.1)
The computer must then transform the specific force into a
suitable reference frame such that navigational information may
be extracted. If rate gyro information is available, then the
direction cosine matrix, g;, can be specified. The relationship
between angular velocity and the direction cosine matrix is

specified by:

«i_ i b
S = s 2ip (1.2)
where
0 - w
z Yy
o = | w 0 - (1.3)
—ib z b .
- w 0
Y X
wb = {w w w_} (1.4)
—ib x" "y’ Tz



Equation (122) is a first order matrix differential equation in
g;. It can alternately be interpreted as a shorthand way of
writing nine simultaneous differential eguations in nine unknowns,

as can be seen by writing equation 1,2 in component form:

4 ] [ = ™ b r~ -~
Ciy Ci2 Cis Cii Ciz2 Cis 0 -w w
2 Y
C21 Cz22 Cz3|] = |C21 C22 Ca23 w, 0 —wy
Cs1 Cs2 Css C3z1 C32 Cis -wy W, 1]
. N JL ]
Clzwz-cl 3wy Ch 3wx-C1 1wz Cy 1wy-C12wx
= szwz"Czawy ngwx-Cuwz Cz](ﬂy-C22wx
Cszwz-Caawy Csawx-Calwz Calwy-cazwx

It should be pointed out in passing that other schemes can
be used to effect the coordinate transformation. Weiner (Ref. 8) has
studied the available choices and concludes that, for single-
degree-of-freedom, delta-modulated instruments, utilizing a
D.D.A. computer, the direction cosine approach requires minimum
computation. Because of our familiarity with the direction
cosine method, we will use it in our considerations of the
strapdown inertial navigation system.

The direction cosine transformation is fournd quite easily
for systems which use electrostatic gyroscopes (Ref 10), since clever
p@ckoff schemes allow the direction cosines (elements of the

C; matrix) to be read off directly. The output of each E.S.G.



-10-

pickoff is the direction cosine between the spin axis and an
appropriate fiducial on the instrument case. Although there are
three of these pickoffs per E.S.G., in general, only two of the
three pickoffs provide useful information at any given time. Thus,
if two E.S5.G.'s are used, only four direction cosines will be
available for computation at any time. The remaining five are
found through application of the orthogonality relationship for
coordinate transformation matrices:

T

cl

i
¢ Ic

cl =1 | (1.5)

The solution of equation (1,2) for the direction cosines can
be done in a variety of ways. If single-degree-of-freedom, delta-
modulated instruments are used, the gyro output angle is sampled
and passed into a zero order hold circuit. Pulse torquing is then
applied to the gyro float to null the instrument. Weiner shows
that for this mechanization each output pulse is proportional to
the integral of the input angular velocity. Thus the output
of the instrument represents an angular rotation about the input
axis equal to AB. This property can be exploited in the solution
for the direction cosine matrix if one considers a Taylor series

expansion of g; in At:

(X

Clt + At) = C(t) + C(t) At + %g(t) At? + -3ng At + ..., (1.6)

where g; = C for notational simplicity.

But application of equation (123) yields:

C(t + 8t) = C()[I + 0 At + 2(2% + D)AL? + .....] (1.7)

If the first two terms of the expansion are used,
C(t + At) = C(t) + C(t) A8 (1.8)

where it was noted that:
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and AB is a skew symmetric matrix composed of the gyro outputs
Aek, k = x, Yy, 2. The result shown in equation (1.8) could, of
course, have been shown by direct differentiation of equation (1.2)
If the computational algorithm of equation (1.8) is used,

which corresponds to a rectangular integration scheme, then the
algorithm error (truncation errcr) is approximately given by the
third term of equation (1.7):

8C = 2 c(@? + fyat? (1.9)
Thus the time step, At, must be chosen such that the errors
resulting from the vehicle angular velocity, 2, and the vehicle
angular acceleration, Q, satisfy the error budget. In addition,
the finite computer word length causes the occurrence of

"round-off" error.
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1.3 Alignment

The problem of alignment in a strapdown inertial navigation
system is basically that of determining the initial transforma-
tion matrix which relates the instrumented body frame to the
reference computational frame, Because the inertial instruments
are mounted directly to the vehicle, ordinary gyrocompassing
methods cannot be used. Moreover, if we address ourselves to
commercial applications of inertial navigation which are 1likely
to appear in the next decade, it is clear that a means of self-
alignment will be essential.

Indeed, it would appear that initial alignment within the
environment and time constraints imposed by commercial aircraft
operation is one of the more critical problems that will face the
designers of these systems. The problem is one of determining a
suitably accurate initial transformation matrix in the short per-
iod of time necessary for commercial success of the aircraft in
the face of deleterious motions of the aircraft caused by wind
gusts, the loading of passengers and cargo, fuel ingestion, etc.

A two-stage alignment scheme appears promising in this reg-
ard (Ref. 11). The first or "coarse" alignment stage would use
an analytic alignment scheme which utilizes the measurement of
the gravity and earth rotation vectors to directly compute the
transformation matrix relating the body frame to the geographic
frame. The same reservations concerning base motion mentioned in
this reference are, of course, applicable here; however, the anal-
ytic method is well suited to calculating an initial estimate of
the transformation matrix. The second or "corrective" alignment
stage refines the initial estimate of the transformation matrix by
using estimates of the error angles between the known reference
frame and the corresponding computed frame.

For both alignment schemes, the instrumented frame is taken
to be stationary with respect to the Earth except for the distur-
bances mentioned previously. Unfortunately, no data is available
at this time on aircraft motion due to wind gusts and other dis-

turbances. We will model the base motion as simple additive



vectors:
f=-4g+ gd (1.10)
Yip T Lie * Y (1.11)
where
gd n disturbance specific force vector
Wy = Yep v disturbance angular velocity

If the geographic frame is used as a reference frame, then
the corrective alignment scheme can be mechanized as shown in
figure 1.3

() £°
-q + £d L fb
Body Mounted —C cn' L .n'
Accelerometers b 7 te
wb
-n'b
L v N
n ny ' b e . e
w, ) b | £
Sie b | EieL%et_.—)—gn' K Flltere_
(u)w®
____JiL____ b
bl w
.t w —cmd —JL1
—-ie =d Body e n' - '
Mounted S AW
Gyros

Figure 1,3 v Self-Corrective Alignment Scheme

Because an initial estimate of the transformation matrix
is available, we can model the misalignment between the actual
and computed geographic frame as a small angle rotation. The
updating method consists of detecting the error angles between

these two frames via the processed accelerometer and gyro signals
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and generating a signal to the transformation computer in order

to drive these angles as close to zero as possible., At the same

time, compensation is provided for the disturbance angular vibra-

tions. This anqular motion compensation provides "base motion

isolation" similar to that provided in a gimballed platform system.
As shown in figure 1.3, the transformation matrix Eﬁl is

updated using the relation:

&= cp 2b, (1.12)
where
n v geographic axes
n' n computed gecgraphic axes
gg'b A skew symmetric matrix of the angular velocity gg,b

which is used to compute the transformation

The angular velocity signal used to update the transformation
matrix would ideally be given by:

Bib = 22 (X.13)
where it was noted that:

We =20
Note that Qg'n is ideally driven to zero by appropriate choice of
K. &As show? in the figure, an estimate of wq is obtained by sub-
tracting Ege , which is coordinatized in computed body coordi?ates,
from the gyro's indication of angular velocity. But since Ege is
not equal to Eie and, in addition, ®s is corrupted by gyro drift
(u)g?, the angular velocity signal used to update the transforma-

tion matrix is given by:

b _ b b b b _ n',-1 n . 18

Yntp T Yema t¥a t WL Y g - (G ) 7w, f.14)
but (Cn')—l WP = (Cn'cn)—l OB = Cb(I+En)wn

b -ie -n —b —~ie = ‘e = ‘=ie

where E is the skew symmetric error angle matrix.
Thus Eq. (1.14) becomes:
b b b

+ (Ww” - E e (1.15)

b b

= +
Yn'b T ¥cmd

wb
—d
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The differential equation relating g to Yemd is found by substi-
tuting the skew symmetric form of equation (1.15) intcoequation

(1.12)
en' _ n' b n' b n' b n' b 1.16
S =S Lema*S WS WE -G 88, (1-16
where
GQb is the skew symmetric form of Eb wb
~ie ymr - —ie

Noting that:

+n' _ _n' sn °n n
& =¢ S +& ¢ (1.17)
n _ .n b .
and Cp =& 24 (1.18)

.n' n _ .n* b n' b_ .n' b
Sh =% &ma v S M S %8ie (1.1%)
on'_ _ &N
but Co=-E
Thus
*n _ _ .n' b b _ .n' b b n' b .b
B ooy B GG WE G g e S
or
2N _ - n n rn
E'= - Qg - (W7 + 627, : (1.20)

where, as usual, products of small gquantities were neglected.

We can write Eq. (1.20) in vector form:

sn _ _ N _ n _ ,n n-
since
n . n _ 5h n
- E wie =8 €

In order to drive E? to zero, szd can be chosen to be a linear
function of the measured estimate of EP' We therefore choose:

n n (1.22)

3 x 3 matrix to be specified

K =~
52 A computed error vector
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Thus equation ({.,21) becomes:

°n n _n n _ _ n
€ + 2, e +Ke = (Ww (1.23)

Note that equation (1,23) represents three scalar differential
equations which are coupled through the term g?e EF' which
represents Earth rate coupling.

The elements of 52 in eguation (1,23) remain to be specified.
A direct indication of the three components can be obtained from
the computed horizontal components of g and the computed east

component of et Specifically, since

n' _ _ phycn
fo - @-Ehg
= (1 -EMN(-g"+ £5+ (WEH
and
g" = {0, 0, g}
then
ch =g & + de'+ (P)fN (1L.24)
fEc ==-4g €y + de + (u)fE (1.25)

where fd and fd are the north and east components of the distur-
N E

bance specific force vector and (u)fN and (u)'fE are the north and

east components of the accelerometer uncertainties, respectively.

The remaining element, € _ , is found by examining the expression

e
for W.- From Figure 1.3,
= (I- Eé)gg(gze + 93 + (u)gp)
= (I - EMuj, +wg+ (0) " (1.26)
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The east component of the above equation is given by:

Wp =T Wi cos L (eD + tan L eN) + wg + (uWw

c E E (1.27)

where and (u)w, are the east components of the disturbance

dE E

angular velocity and gyro uncertainty, respectively.

The system is designed to process the £, , £, , and w

N E E
c c c
measurements assuming that there are no error sources.
n fEc ch fEc ch
= B ey, —— L — - —
3 5 g tan 5 sec L mie} (1.28)

The error in the estimation, 8e, is found by substituting

and Eqs. (1.24), (1l.25)and (1.27) into Eq. (1.28):

- 1 -
- g (de + (u)fE)
n_ _n n_ _n 1
€. = € + 65 =g + 3 (de + (u)fN)
tan L sec L
—= (£, + (WEf ) =—/—= (w; + (Ww,)
B q dB E ie dE E

(1759)

It is now necessary to determine the form of the K matrix
used to drive the error angles to zero. One can use Kalman
filtering techniques to determine the elements of K. The deter-
mination of K is formulated in this manner in Ref. 11. We shall
choose an easier method which will illustrate the important
concepts but which will fall short of the "optimal" method. We
shall require that K be chosen such that Eq. (1.23) becomes un-
coupled. This can be accomplished since Egn is constant at a
given latitude. Thus we are choosing the off-diagonal terms of
K equal to minus the corresponding terms of the skew symmetric

.o .
matrlxlgiey i.e., choose:
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. ) ) .
hN - Wi, Sin L .0

K= w;e SN L Kg Wie COS L (1.30)
i 0 Wi, COS L Ky

Thus Eq. (1.23) becomes:

n

e” + Ky g + K 8" = - (w'
(1.31)
where
Ed ~ diagonal gain matrix (diagonal elements of Eq. ] 30)
Se = €. " & A estimation error for the error vector (defined

by Eq. (1.29)

If the term K ng in Eq. (1.31)is examined in detail, it is seen
that if the settling time of the system is to be reasonable,

KN’ KE' Kp?> Yie
Thus Eq. (1.31) is rewritten as:

*n n n n
€ 4+ K, e =- (uw - K, §¢
- -4 = - =-a "= (1.32)

Equation (152) is a first order, uncoupled, vector differential
equation for the error angles. The contributions from the various
error sources is best seen by writing this equation in component

X

A

form, where p =

(p + Kyley = 7 (de + (W)~ (Wwy (1.33a)
Kg
(p + K)ep = - 5 (de + (w)fy)- (o, (1,33n)
_ sec L _tan L _
(p + Kep = KD[—“E—(wdE + (Wuwp) 5 (deHu)fEﬂ (Ww

(1.33¢)
It is obvious by inspection of Egs.(1.33) that this alignment
scheme, in an analogous fashion to the physical acceleration
coupled gyrccompass scheme, deteriorates at high latitudes,
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becoming inoperative at the Earth's poles. Observe that the

error angles are a function of both the base motion and the instru-
ment uncertainty. The equations are readily solved using Laplace
transform techniques. Assuming that the forcing functions are
general functions of time, we have:

+ (u)TE) (u)B& eN(O)

- +
s + Ky s+ Ky s+ K (1.34a)

%)
]

(£
_ Ky fag
g

g (Eq + WFY

= - Kg N _ (u)wE . eE(O)
E g s + KE s + I% s + KE (1.34b)
Kp (“’dE + (@ug) . L"-fdE Wty )%
€. = — sec L -, an — - — I?
D~ Wi, s + K g S b s b
. eD(O)
s + KD (1.34c)

Applying the convolution property:

t
ézﬂ-l E‘%‘K w(s) = fo KT (1) ar

The unique solution to Egs. (1.34)for arbitrary inputs is given bvy:

R A Ky

eglt) = o e [75- de(r) + 5 (£ (1) = (u)wylr)ldr
—KNt
+ eN(O) e (1.35a)
-K.t ¢t T
ep(t) = e E 4) eKE [- 2? de(r) - ;? () £ (1) - (Wowg(r)ldr
—KEt

(1.35b)

+
m

(o]
o
o
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Kt t KDT Xn

eD(t) =e U ﬁ) e {sz sec L [wdE(T) +'(u)wE(1H
tan L Bt
K =2 [de(r) + (1)) = (aep(nfdr +e;(0) e (1.35¢)

Since the base motion is not specified, it will be best to
treat Egs. (1.35) statistically. We find the mean squared value
by squaring Egs. (1.35) and taking the mathematical expectation of
the result. If the statistics of the independent variables are
uncorrelated, i.e., if the various random processes are indepen-
dent and if no more than one is biased, then the cross coupling
terms will drop out when the mathematical expectation is taken.
This laborious task is best left for computer solution.

We will investigate the system dynamics for tiie simple case
of zero base motion, constant accelerometer uncertainty, and

constant gyro uncertainty:

£.(t) = £, (t) = w, (£) =0
dp dy dp,

constant, k N, E

(W€, (£) = (W,

I
I

(u)mk(t) (u)wk constant, k = N, E, D

Egs. (1.35) then yield:

(un)f (u)w =Kt -K. .t
E_ “)(1-eKN)+eN(0)eKN

€, = (

N g Ky (1.36a)
(u) £ (w)w -Kpt ~Kgt
_ N Ey 1 _ E
€p = - 3 + —Rﬁ ) (1 e ) + eE(O) e (1.36b)
(u) £ (u)w ~K.t -K,t
e = (sec L (o tan L 5 E _ Xs D)(l - e )+e (0) e P



The steady state errors are seen to be given by:

SSs

SS

Ss

. sec L

(u)fE _

-2]1-

(u)wN

g9

Y

(u)fN } (u)wE

g

(VR
i1e

e

tan L (W Wy

(Wwg - g~ X

D

These equations are summarized in the following table:

€/ e/ €y
/)y -1/Ky 0 0
/(u)mE 0 -l/KE l/wie cos L
/() wy 0 0 ~-1/Kp
/(u)fE 1/g 0 -tan L/g
/() £y 0 -1/g 0

Figure 1.4 ~ Analytic Gyrocompass Steady State Frror

Coefficients

(1.37a)

(1.37b)

(1,37¢c)

Comparison with Ref. 1 which shows comparable information for an

acceleration coupled physical gyrocompass reveals striking

similarities between the two systems.
error sources and sensitivities are the same for both systems.

Note that the primary

That is, the level errors are caused primarily by the accelero-

meter uncertainties and the azimuth error is caused primarily by

the east gyro drift.
effect of base motion is likely to be very significant in the

It should be emphasized, however,

that the

alignment of a practical system, whether or not one uses a physi-

cal or analytic gyrocompass scheme.
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1.4 Instrument Redundancy

Since the question of reliability in inertial navigation
systems is often alluded to in technical literature, it is well
to discuss certain aspects of the problem at this time. Although
we could address ourselves to the reliability aspects of other
components of the inertial navigation system, it has been found
through experience that the gyros are the least reliable system
components (Ref. 13). Thus we will consider various redundant
gyro configurations.

To motivate the discussion, consicder an I.M.U. with three
gyros mounted with their input axes along three mutually ortho-
gonal axes (triad configuration). Clearly the system will fail
if any one gyro fails. If the gyros are assumed to fail indepen-
dently and to follow an exponential failure rate, the reliability
of such a system is given by the product of the reliabilities
of the individual components:

e-3At

R = (1.38)

where
R ~ reliability A probability that satisfactory performance
will be attained for a specified time period
% v~ mean time to failure
t v time

Thus to achieve a reliability of 0.95 for one year requires a gyro
mean time to failure of 59 years. In a commercial application
some consideration should be given to this aspect of system
performance since a "cost of ownership” criterion is now being
applied to inertial navigation system procurement.

If it has been established that gyro redundancy is required
for a particular application, the problem still remains of
choosing a gyro configuration which is optimal. This problem has
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been studied by Gilmore (Ref 14). He finds that symmetric arrays yields

optimal performance from a least squares weighting point of view
and in addition yield maximum redundancy for the number of
instruments in the particular array. Only three symmetrical arrays
are shown to exist (a symmetrical array is defined by the placing
of axes through the center of a sphere such that the great circle
angles between the axes are equal). They are:

1. Triad ~ axes normal to the faces of an angular
hexahedron

2. Tetrad n axes normal to the faces of a regular octahedron
or tetrahedron

3. Hexad ~ axes normal to the faces of a regqular dodeca-
hedron

The coordinate transformations between the tetrad and hexad con-
figurations and the triad configuration are given by:

-

1l 1

1
tetrad /3 ]-1 1 1
. = (1.39)
=triad 31, 1 1
1 -1 1
- -
sin a 0 cos a
~sin a 0 cos o
92??23 - cos a sin a 0 (1.40)
cos o =-sin o 0
0 cos a sin o
0 cos o =-sin a

where
o v one half the great circle angle between gyro input
axes = 31° 48' 2.8"
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Both the tetrad and hexad arrays are capable of effecting a
solution if any three gyros are operating. Both systems have
self-contained failure detection and isolation capability, an
advantage over systems consisting of two redundant triads.
laving established the symmetric arrays as optimal, the
task remdins of computing the configuration reliabilities. If
we take the tetrad as an example we see that the system will

function if:

1. all four instruments operate
2. any combination of three instruments operate

Now the probability that all four will operate is given by
(intersection of independent events}):

P(4 operate) = R? = e 4rE

(1.41)
while the probability that any combination of three will operate

is given by:

=3t () _TAt, (1.42)

P{3 operate) = 4 R3(1—R) =4 e
then the configuration reliability is given by the sum of Egs.
{161) and (162) (union of mutually exclusive events):

-3\t

=4 e -3 4t

Rtetrad (1.43)

Similar reasoning can be used to how that the reliability for

the hexad array is given by:

_ =3t 1o om3At -2\t _ -At
Riexad = © (20-10 e + 36 e 45 e” ") (1.44)

Figure l.5 shows plots of equations (1.38), (l1.43)and (1.44). In

addition, curves are shown for systems consisting of:

two redundant triads
three redundant triads
six orthogonal gyros
nine orthogonal gyros
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The plots are made under the assumption that any failure can be
detected and isolated. Note that the reliability of the non-
orthogonal arrays is quite superior to that of the redundant
orthogonal arrays.
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0.1

Instrument Reliability Time Constants (At)

Fig.1l.5 N Reliability Plots - Perfect Failure Isolation
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Error Analysis

In addition to the error sources treated for the gimbal
systems which are considered in Section 2 the strapdown mechaniza-
tion utilizing S.D.F. delta modulated rate gvros gives rise to
several other error sources which must be modeled. A partial list
of additional sources would include:

a. Gyro torquing asymmetrv

b. Non-commutivity of the attitude matrices
¢. Truncation error

d. Gyro and accelerometer auantization error
e. Computer round-off error

We first note from Fig. 1,2 that in the rate gvro mode the signal
generator output, which is a voltage nroportional to Ag, is
affected by Wrar Ag wsgA, and Won*

tional to Ag YsrA and Wop must be compensated for if high accuracy

is to be achieved. This is readily accomplished since Woa and

are obtainable from the other gvros. Since all of the

The outputs which are propor-

w
SRA
deterministic effects are hopefully accounted for, we model the

residual as the uncertainty (u)w.

1.5.1 Torguing Considerations

We have from Page 5 that the steady state equation
relating the gyro output angle to the input axis angular velo-
city is given by:

awc

(Wip)e = B9 = Uip/3xg

where

(wib)c A computed angular velocity

Thus, if the torgquing scale factor, amc/aAq, is not known

precisely, the computed angular velocitv along the gyro's
input axis is in error by an amount given by:
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w © W w
= IA - IA c c
tojp)e = 3a; To, = m/mg L (Ag)/ (9Eg) ]
dAg + 5(5Ag)
"
Ny = T W

where S

dw
T = 6(335)/(§K§) n torquing scale factor uncertainty

Thus a positive scale factor error (scale factor too high) gives
rise to a decrease in the measured angular rate. '
In vector form we model the gyro scale factor error as:

b _ b b
GQT = T b (1.45)
where
GQT A error anqgular velocity in Wip due to torguing scale
factor
EP n diagonal scale factor uncertainty matrix
T 0 0
x
=10 T 0
Y
1] 0] T

Figure 1,6 shows a typical plot of measured angular rate versus

true angular rate:
(wip)

_L ¢ Ideal
W -

™Wip ib Positive Scale
‘F' ~TFactor Error

“ip

Positive Scale
Factor Error

Ideal —

Fig. 1.6 ~» Torquer Considerations
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In a typical mission one does not sustain a constant angular
velocity for indefinite periods. A typical angular vibration
environment would result in the gvro operating in the null region.
Note from Fig. l.6 that a sinusoidal angular oscillation with a
mean value equal to zero results in a zero mean angular velocity
error equal to:

Sw, = - 1T Wra sin w t

where

w A~ amplitude of input argqular velccity

IA
w n vibration frequency

If the scale factor error is asymmetric, however, sinusoidal
angular vibrations can aive rise to a growing error. Let us say
that for positive inputs the scale factor error is given by ot
and for negative inputs bv 1 . Then for each cycle

+ m - 27
§6p = - T wp, &) sin w t At - T wp, /] sin w t dt
a U
w w
= ~ 271 Y + 21 R
w w
w
IA -
—ZT(T T)
but for sinusoidal vibration, Wyp = Sw,
where 6 N vibration amplitude.
- +
:.GGT =206 (t -1) (1.46)
a

Thus for each vibration cycle an angular error results which is
proportional to scale factor asymmetry. Let us evaluate an
example to see what the magnitude of this buildup might be: Let

us say that the vehicle is vibrating at w = 10 cps with an ampli-
tude of 1 min. Thus if we assume that (1t~ - 1+) = 10-5, the

per cycle angular error 1is:

-5 _min
GeTa—ZX].O m
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For a two-hour flight, the accumulated error is equal to:

P
2 x 10-5 min_ ..o cycle x 2 hr x 3600 sec

(seTa)Z hr cycle sec r

?

ey
1.44 min

This effect would appear to be quite significant and probably
requires that the designer make a detailed evaluation of the
angular vibration environment. In a particularly severe case,
shock mounting would probably have to be employed. For a constant
sinusoidal vibration along each gyro input axis, Eq. (166) in
vector form can be expressed as an angular velocity uncertainty:

- + 7]
(t, = 1,06, 0 0
- + b
= 2 T, - 1.)8 0 w (1.47)
GQTa 0 ( v y) y w
+
0 0 (t, - 'rz)ez
where ]
ek ~ vibration amplitude about kth gyro axis.

b . .
w~ A vibration frecuency.

Obviously, for Eq. (1.47) to be used effectively, the angular vibra-
tion spectrum must be known. This type of data is rather scarce
for any aircraft and, in addition, would tend to be strongly
influenced by the aircraft tvpe, mission, Y.M.U. location, etc.
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1.5,2 Commutation Frror

Non-commutivity effects result frem the fact that the attitude
matrix computer is working with finite size angular outputs from
the rate gyros. Thus an error will be introduced into the atti-

tude matrix, En To investigate the form of this error, consider

b*
the case of three successive rotations ahout the body's positive
%, y, and z axes. -Then the coordinate transformation relating

the rotated coordinates to the origiral hody coordinates is given

by:
cos 6 -sin 6 0 cos 6 0 sin 6 1l 0 0
z z y v
b . .
C,+ = |sin 8, cos 6, 0 0 1 0 0 cos ex-51n 8,
i 0 0 .'lJ :51n ev 0 cos ey 0 sin ex cos ex—

where b' denotes the rotated frame.

If the rotation angles are eacual to the A6 nulse sizes, we can
expand the above expression, keeping up to second order terms.
We get an expression of the form-

L}
' = 1+ 20P) (1 + 0P (1.48)
% LY
where _ .
0 -ae_ a6
aef = | a0 0 -A8 1.49
p z X (1.49)
28 A8 0
y
2 2 7
(80,2480, ) 0 0
b_ _1 2 2
o® = -3 0 (88 2+20_2) 0 (1.50)

2 2
0 0 (8406 +A6y )

— —
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The second order term represents the non~commutivity error. Thus
a direct error results in the attitude matrix which is given by
—Qb. Because this matrix is diagonal, the commutation error is
seen to be similar to a scalino error. Also, from the symmetry
of the above equation, it is seen that the form of the non-
commutivity error is independent of the order of rotation. Since
the commutation error is seen to be on the order of Aekz, we
choose the angle increments as small as possible consistent with
computer speed and roundoff error considerations. Unfortunately,
the prediction of the commutivity error with time requires a
complete time history of the input angular velocity. Farrell (Ref. 12)
has evaluated the error buildup in response to angular oscilla-
tions and finds the commutation error to be quite significant if
the A6 opulse sizes are not kept below about 20 ggé. Systems are

Ve
currently being built with pulse sizes in the 1 + 2 sec range.

Truncation Frror

As was pointed out in Section 1.2 truncation error results
from approximations in the algorithm used to update the attitude
matrix. From Eq. (1.9) the truncatioﬁ error for the rectangular
integration scheme is given by:

5C = 5 C(2* + Q)aL?

N =

This error is seen to be Hroror tional to (48)2. Thus it would
appear that the truncation error might be reduced by using higher
order integration schemes. This is indeed the case, but one must
pay the penalty of more computation and more roundoff error for

a given computer word length. The use of a high order iteration
scheme results in the truncation error being insignificant in
comparison with the commutation error discussed previously.
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Quantization Lrror

Quantization error, which is to be distinguished from
commutation error, is defined to be the error which results from
the digital measurement and conversion of continous physical
quantities such as the angular position of a gyro float assemblv.
These errors can result in at most one kit of information being
lost during the mission. Treated statistically, the resulting
error appears in the form of a random phase shift. Thus, by
appropriate choice of quantization levels, the resulting naviga-
tion error can be reduced to negligible pronortions.

Quantization effects become verv imvortant during alignment,
however. It is readily seen that for the case of fixed base
alignment the opulse rate is likely to be very low. Thus long
filtering times are necessary to smooth the data. In addition,
complications can be introduced by instruments which limit

cvcle hecause they are being pulse toraued (Ref., 9).

Roundoff Error

Roundoff error is associated with finite computer word length.
Each time a computation is performed, the computer must approxi-
mate the last digit. This effect is readilv analvzed using
statistical methods to determine the word length recuired to vield
a specified rms error after a specified numher of computer

iterations.

Orthogonalization

There is no gquarantee that after many iterations, the com-
puted attitude matrix will satisfy the orthogonality relationship:
cfec=1
It is readilv seen that the errors resulting from commutation
and truncation will result in a skewing of the computed reference

axes. Although Ref. 12 shows that the periodic orthogonalization

does not improve the attitude reference svstem performance, the
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orthogonalization procedure is recommended for the purposes of
analysis.
The attitude matrix can be orthogonalized by setting:

* T . -1/2

T2
n
)
a
e

(1.51)
where
gf v optimal orthogonal approximation to C in the sense
that trace {(gf - gf?g* - C)} is minimized.

Unfortunately, there are no general rules which can be applied

in determining the square root of a matrix- in fact, one cannot
even predict how many roots exist. A solution, albeit non-unique,
is readily generated using a computer.

1.5.7 berivation of Error Equations

f

b n'
o [STRUCTURALLY | Yc=Yip*ée ‘:/_“-“-in)c —4 “ine
MOUNTED e @3 )
GYROS

A strapdown system which computes in geographic coordinates
will be analvzed in this section. The functional diagram for
such a system is shown in Fig. 1.7.

(u) £ ACCELERATION
= COMPENSATION
JLf b_b, b, b b n'
f=f +8f +
STRUCTURALLY |Zc = *SL+2" £ ~ o v+ LOCAL VERTICAL L,
MOUNTED Sy | NAVIGATION
ACCELEROMETERS COMPUTER [

(u)w

4 bb vasd

Pig. 1.7" Strapdown System Computing in Geographic Ccordinates.
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Note that in Fig.l.7 we have arkitrarily chosen to express the
error in the transformation matrix as-
] nl

C = C C

n n _ _ @l AN
% =% &= EL-ENG

We could have proceeded to define the attitude matrix as:

n _ )
Cpr = & Spr = G L+ E

which would, of course, vield identical results.

1]
It is, of course, tacitly assumed that the attitude matrix, gg R

has been suitahlv orthogonalized per the method of Section 1.5.6
The attitude matrix is urdated usino the first order matrix
equation-
°n' n' b
n

C = C Q

S =% S (1.52)

Because of the orthogonalization procedure, the coordinate trans-
formation relating the geographic coordinates to the computed

geographic coordinates is given by:

1
c =1 - " (1.53)
—n — ——
where -
0 -eD €p
n
E = eD 0] ~€y
-€ €4 0

If we assume that all of the errors involved in computing
the attitude matrix which were discussed previcusly can be treated
as resulting from erroneous angular velocitv command, the angular
velocity used to update the matrix is given bv:

b b

_ ety -1
Yn'p < (ﬂib)c (Eb )

nl
(©in) e (1.54)
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where
(gfb)c N computed angular velocity of the body coordinates
with respect to inertial coordinates.
n

(gin)c v computed angular velocity of the geographic coordi-

nates with respect to inertial coordinates.

Because of the uncertainties in the gvros and in the computation
]
of g; . the computed angular velocity is given by:

b _.b b b n n'
Yty = Yip t 0L Sn Snv Winle (1.55)
where :
69? v equivalent angular velocity uncertainty which results
from the various error sources.

But expansion of (w?l) shows that:
—in’c

]
(wn ) = TV

—in‘e —in —~ —in
where

LS 6L

X .

wi=]o L

L

~6L 0 LY
L X

Thus Eq. (1,55) becomes:

b b b b,. n n
vy, = w5y + 8w’ = COI + EM(I + Whuy
or
b b b b h
@y = Yy + 00T - (BT 4 ﬂb)ﬁin (1.56)

Substituting the skew symmetric form of Fq. (1.56) into Ea. (1.52)

vields:
on' n' b b _ 4P
Cp =S (2, + 687 - 62;)) (1.57)
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where
b . b »,, b
" £ o ] .
Ggln N~ skew symmetric form of (E + W )an
but
n' _ 4 n' n, _ sn' .n n' =n
S =a G B =& S &
n' .n n n' .n /b
= gn Qn'n g-b + gn gb gnb
Thus,
n = n n
fprp = 68 2 n

e = - 6w+ (" + Wl (1.58)
n n _ _ . n _n
but E° win = - &4p €
thus
'n n _n n - _ _ .n
£+ o, MW ug, = - e (1.59)

Fquation (1.59)is three equations in five unknovms as is readily
seen by writing out in component form:

€.+ A sinL e, -Le -cosLS5A+AsinLéL =~ 68w (1.60a)
N E D N

€p ~ A sin L €y ~ A cos L eD + 8L = ~ 5mE (1.60b)
eD + L €N + A cos L €n + A cos LSL + sin L 8§\ = - GwD (1.60c)

Comparison with Eq. (2.28)reveals that this eaquation is identical
to the corresponding ecuation obtained for the local vertical
platform system, .

The latitude and longitude errors are snecified by examining
the expression for the comnuted specific force. The computed

specific force is given by:

£P = ¢
—-c

(See Eq. 2.5 for definitions.)

bistP+aP g 1.61)
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where, in this situation, the accelerometer frame is the body
frame. The computed specific force is transformed into the com-
puted geographic frame by the computed attitude matrix. Thus:

9
£ = £7 - P £ 4 s£" 42" £7 (1.62)

where products of small quantities have been neglected as usual.
The derivation that now follows is identical to the corresponding
local vertical navigaticn system development. (See Section 2)
Expressions for the computed smecific force components are
first expressed as a function of the specific force and the
latitude, longitude, and altitude errors. The result is Fgs.(2.16)
and (2.17). The appropriate components of Eg. (l.62)are then sub-
stituted into Egs.(2,.,16) and (2.17)yielding Eqgs.(2.18) and (2.19).

Egs. (2.18), (2.19) and (l1.60)are then solved simultaneously for
the state vector. The equation to be solved is given by:

- - -
€n - SwN
€p - dw
€ =|=-3u (1.63)
D
5L (u)fN ~{(L + 2L ph ~ Eg + ay fN
L& A- _(u)fE - cos L (A + 2X p)§h + na + wg fEi
where
N n the left-hand side of Eq. (2.28)
suw™ A uncertainty in the equivalent computed angular veloci-

ty of the geographic frame relative to the body frame
due to all of the relevant error sources.
(u)me equivalent north accelerometer uncertainty.
(u)fEm equivalent east accelerometer uncertainty.
The solution of this equation will be identical to that of the
local vertical platform system. Thus the error response curves
shown in Section 2 are directly applicable.
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2. Local Vertical Inertial Navigation System

2.1 Introduction

The local vertical inertial navigator is a semi-analytic
system instrumenting the geographic coordinate frame. That is,
the reference axes of the space integrator are commanded into
alignment with the local north-east-down coordinate system. The
system is composed of a three-axis space integrator, two accelero-
meters which are orthogonally mounted in the instrumented east
and north directions, and a computer to perform the necessary
navigational computations, Figure 2.1 shows a functional block
diagram for this type of system. Note that three accelerometers
are indicated although the vertical accelerometer is usually not

present.,

PHYSICAL ACCELERATION
COUPLING COMPENSATION

3 AXIS :::> ACCELEROMETER

SPACE TRIAD COMPUTATION —>
INTEGRATOR ’
T, NAVIGATIONAL
‘ INFORMATION

ANGULAR VELOCITY COMMAND TO
PLATFORM

Figure 2.1, Local Vertical Inertial Navigation System

The instrumented north and east accelerometers are connected at the
signal level with the east and north gyros, respectively. Since the
vehicle carrying the navigation system may move freely over and

above the surface of the earth, the space integrator gyros must be
torqued at a rate proportional to vehicle longitude and latitude

rate such that the platform can maintain its axes aligned with
geographic axes, The required torquing signals are generated from
the accelerometer outputs. Because the instrumented coordinate frame



is rotating with respect to inertial space, Coriolis terms are
present in the accelerometer outputs. The accelerometer output
signals must therefore be compensated such that gyro commands as

a function of only longitude and latitude rates may be obtained.
Note, however, that no explicit computation of the gravitational
field is required since, neglecting the deflection of the vertical
terms, the north and east accelerometers are nominally perpendicu-
lar to the gravity field vector, g.

This configuration has an additional computational advantage in
that no explicit coordinate transformations need be performed to
obtain navigation information.

2.2 Description of System

The system design is motivated by examination of the expression

for the non field specific force in navigational axes:

£ = et - ¢l (2.1)

where
f ~ Nonfield specific force vector
ﬁ n Position vector from the center of the Earth to the
' system's location
G ~ Gravitational field vector
g? v Coordinate transformation from inertial coordinates,

"i", to geographic coordinates, "n",

| : Note that the superdot indicates a tiwme differentation.,
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The geometry relating the geocentric inertial frame, "i", the
geographic frame, "n"; and the geocentric earth frame, "e", is

shown in Figure 2,2,
(N, E, D) ~ Geographic
(x, y, z) ~ Inertial

(xe, Yoo ze) ~ Earth

Inertially Fixed
Reference Meridian

Greenwich
Meridian

Local Meridian

b 4 Earth Frame
Meridian

Figure 2.2, Coordinate Frame Geometry
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In Figure 2.2,

A Reference longitude from Greenwich

2 ~ Terrestrial longitude
A ~ Celestial longitude
%

L "~ Geographic latitude

We v Earth's angular velocity

Note also that at t = 0, the inertially fixed reference meridian, the

earth frame meridian,

have that:

Equation 2.1 can be written as a function of the geographic
latitude, L, celestial longitude, A, and the radii of curvature,

r

L
(r i + lr (iz—m? )sin 2L + 2; i + 2—2 Yesin2l, - 3ersin2L iz -£
L 274 ie L r,
EP = rzxcos L - 2r££isin L + Zélicos L +ng
.- . | r2 . .
~-g - ¢ - rLLesin 2L + rl(kz-wie,)cos2 L + FE L2
where:
r, & r(l - 2e cos 2L)
n radius of curvature in meridian plane
rp = r(l + 2e sinzL)
n radius of curvature in co-meridian plane
£ ~ meridian deflection of the vertical f/positive about east)
n ~ prime deflection of the vertical (positive about north) |
e  earth's ellipticity = 1/297
g " magnitude of gravity

A= L= 20 +u)i t

and rz as follows:

r_ ~ local geocentric earth

(o]

h ~ height above reference

and the local meridian are coincident.

e

radius magnitude

earth model's surface

1

Thus we

(2.3)



-43-

Equation 2.3 is an approximate expression which contains terms

5

which are greater than 2 x 10 g for the following maximum values

of vehicle motion:

erax = rxmax < 0.5g

* : - 4
= & 2,
max max < 2 x 10 rad/sec

In

100 ft/sec
max

rmax -<— 2g

Those limits correspond to those which one would expect to encounter
in an aircraft application such as the supersonic transport. See
ref., 1 for the details of the derivation of eq, 2.3,

Navigational information is readily obtained from gé since, if

Coriolis and cross coupling compensation is provided in eq. 2.3, then

FrLL - &g
£ = r XcosL
—compensated A

-f -g
L. -

Latitude and longitude can then be found by a double time integration
of the north and east specific force measurements, respectively,

It is also necessary to generate the angular velocity coﬁmand
to the space integrator such that the geographic frame is instru-
mented. Since an uncommanded space integrator will remain nonrotating
with respect to inertial space, the required to:r juing command is
just the angular velocity of the geographic frame with respect to

the inertial frame,
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- . 1 [ y
A cos L (w. + L) cos L
ie
n _ -L = _r
.u.).j_n_ L
- X sin L . . (2.4)
L ) (wie + L) sin L J

Figure 2,3 illustrates the mechanization in detail,

In Figure 2.3 the subscript "c" denotes a computed physical
quantity. In addition it was noted that the earth referenced
velocity, coordinatized in geographic axes is given by (to an

accuracy of better than 0.1 ft/sec for aircraft altitudes):

<
! =]
e
al
D e
Q
]
0
[
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2.3 Alignment

The alignment procedure for the lacal vertical inertial navi-
gation system consists of physically aligning a coordinate frame
associated with the inertial measurement unit with the geographic
frame. If optical means are used for alignment, then fiducial
lines on the platform representing the platform coordinate axes
are aligned with geographic axes. The platform coordinates are
then related to the gyro and accelerometer input axis coordinates
through a calibration procedure. If on the other hand, gyrocompass-
ing schemes are used for alignment, the gyro and accelerometer input
axis coordinate system is physically aligned with the geographic
coordinate system. For our purposes, we will assume that the rela-
tionship between the instrument axes and platform axes has been
accurately determined through calibration procedures, allowing us
to think of the platform frame as being synonymous with the frame
defined by the instrument axes. :

Reference 1 treats the case of fixed base physical gyrocompass
alignment, while reference 2 looks at the effect of base motion on
gyrocompass performance. In reference 3, a unified theory of align-
ment is developed. The subject of alignment will not be developed

further in this report.

2,4 Error Analysis of Local Vertical System

The error equations will be developed using perturbation

techniques for the following error sources:

gyro drift

gyro torquing uncertainty

accelerometer uncertainty and scale factor error
deflection of the vertical

initial platform misalignment

initial condition errors
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The computed specific force, £, is given by:
£2 = £P 4 (ufP + AP £P (2.5)
where

() £P v accelerometer measurement uncertainty vector

é? v accelerometer scale factor uncertainty matrix

aN 0 0
P _
A = 0 aE 0
0 0 aD
! |

and ay, k = N,E,D is the scale factor uncertainty associated with the
th accelerometer, expressed as a numerical ratio, In this case, the
accelerometer frame is the instrumented geographic frame denoted by
"p" super/subscripts. The instrumented or platform axes differ from
the true geographic axes because of imprecise torquing commands due
to the error sources, If we define error angles En’ Epe and €p
resulting from positive rotations of the instrumented frame about

positive geographic axes, then:

[ 1 *p  fE
c =| ¢ 1 € = [I+E" (2.6)
-p D N - — (]
“€p €N 1
Thus:
P _ - ghy 0 P P ¢P _
- 2P ey, g, g ) (2.7)
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As is shown in Figure 2.3, the computation scheme assumes that
the outputs of the north and east accelerometers are given by
the north and east components of equation (2.3), Thus the in-
dication of latitude and longitude is found by subtracting off
the Coriolis and cross coupling terms from the components of
equation (2.7). Thus

rL i =g - L (32:42 yein 2L - 205 <20CF esin2h +3er.si 12 (2,8)
ce N, Z "2, “cie c Léb Too c® ct3eresin2Leol, )
rzc Ac cosLc = fEc + Zrchc A051n Lc - Zrch cCOs Lc (2.9)

Note that the deflection of the vertical terms cannot be included
in the above expression since no knowledge of their magnitudes is

assumed. Writing out the expression for fN and fE from eq, (2,7):
c c

*h
"
+h
+
[y

N N D fE - €g fD + (u)fN + ay fN' (2,10)

fE = fE - & fN + ey fD + (u)fE + ag fE (2.11)

Now the computed expressions for the radii of curvature are given by:

H
]

r (1 - 2e cos 2L)
c c

. 2
. rc(l + 2e sin Lc)

[a]
]

But the calculated magnitude of the earth radius vector is given by:

r, =r_ + h_ (2.12)
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where

r, "~ calculated local geocentric earth radius magnitude
c

.2
~ re(l - e sin Lc)
hc v estimated height above the reference earth model's surface

re W earth's equatorial radius
Substituting the following error quantities in eq. (2.12)
L =L =L

dh

L]
=2
1
=3

there results:

1

r

o r + 6h (2.13)

where the small quantities involving products of e and error quantities
have been neglected.

Thus
r, = r{l ~ 2e cos 2(L + 8L)] + &h
c
r, = r{L + 2e sinZ(L + 6L)] + §h
c
o r, =1r +6h (2,14)
c
r’Lc = rz + &h (2.15)

If egs. (2.10), (2.11), (2.13), (2.14), and (2,15) and the error

quantities:

IL =L+ 8L; X_= X + 8



are substituted into

r L + r X sin 2L 62X

r cosL 61 + 2(r cosL

ng + (u)fE + a_f

In deriving egs
than 2 x 10°°

E'E
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-Eg + (u)fN + aNfN + €

r L sinL)8X - 2r X sinL 6L -r(X sinL +2LicosL)6L

+ £ e. ~f e =2 A cosL §h - AcosL éh (2.17)

N N°D

egqs, (2.8) and (2.9), there results:

D

fE - eEfD- Léh - 2L éh

(2.16) and (2,17) only terms with magnitude greater

g have been retained when the vehicle motion has the

same maximum values assumed in the derivation of eq.(2.3) and if,

in addition the

GLmax

§ Lmax

§ Lmax

§ hmax

§ hmax

following error data is specified,

it

3

—_ -

kaax = 10 min = 2,9 x 10
5 = 6L __w_= 3,6 x 1078

max max s

L1 _ 2 _ —9
meax = 6Lmast = 4,5 x 10
2000 ft,

Shmast = 2,5 £t/sec

where wg = (g/r)l/z, is the Schuler frequency.

rad
rad/sec

rad/sec2

Substituting in the analytic expressions for the specific force
components in the fe terms from eq. (2.3), neglecting terms with

magnitude less than 2 x lO—Sg when:

€

a

k

N

< 10 min = 2.9 x 1073

& a

E

< 17103

rad, k = N, E, D

(2,16)
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The angular velocity of the space integrator, i. e. the instru-
mented platform axes, with respect to the inertial frame:

P _ P 0 P
ﬂip gn “in + 2np (2.20)

is equal to the applied angular rate plus the gyro drift:

= [~ .
Accos Lc (u)wN

1 + TP -L + oy | = [+ el + ()P (2.21)

(u) wp

where
Lc and Ac n computed geographic latitude and celestial
longitude, respectively.
92 n computed angular velocity command.

- -
™ 0 0
P =0 T 0 torquing scale factor
- E uncertainty matrix
_0 0 TDJ

and

(u)g? n gyro drift vector.

= {(u)wN, (0)wg, (u)wD}
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Since computed latitude and longitude are given by:

Lc =L + 8L
Ac = A + 8
then:
P_  n n
8 = Win * Wag, (2.22)
where
L2 0 5L
A
w" = 0 8L 0
L
-5L 0 2.1
L A §
Finally, then
P _ n n n p . n p
gip Lin +u in + I Lin + (u)g

(2.23)

(L + W) wf + () WP

Equating equations (2.20) and (2.23) yields an expression for the

error angles of the form:

- g n P n_ ..p n P
(Z-E) W+ &= L+W+T) w + o
which can be rearranged as:
P _ n. P n, n P
wpp = (H+ TP + B wf o+ () w (2.24)

The above equation is a first order linear vector differential
equation with time varying coefficients, as can be readily seen

by the writing out of the equation in component form:
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- L €p * A sin L €g = cos L sA + ™ Acos L - A sin L 8L +,,(u)wN
(2.25)

- X cos L €p - A sin L éN = - §L - Tg L + (u) o (2.26)

+ XA cos L EE + L EN = - Xcos L 8L - sin L 6Ar - TD A sin L + (u)wD
(2.27)

Equations (2.18), (2.19), {2.25), (2.26), and (2,27) are the
required five equations in five unknowns which specify the platform
error angles and the latitude and longitude errors. Using the
differential operator _ d , these equations can be arranged

in matrix form as follows:a-E



X9

19

jm (T uts T a2
- T SOD I 2

+ d T soo a)

d 1z urs y x

d 1 uts

d T soo -

T <
(1urs £

+ 1 S00 Y 7T

+ d T urs y)agz-

7T S00

&
(Tz uts Nm T

+ 1)

7T sod Y I~
T uts Y T ag

LS00
-

TgS02 LY I-
0 b
SRS
I
AN 0
X - b-
s00 'Y T
d T UTS Y =
urs y d
-




(82°2)

o

Yo (dY Z +Y) TS00 - HBU (T uex Yy T Z - () T sodx dy

ye (d 12 + 1) - b3 - 1a Np

T urs y %1

(n)

(n)

(n)

(n)

(n)
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Solution of the matrix equation (2.28) will give the error response
for the local vertical inertial navigafor for arbitrary vehicle mo-
tion within the constraints stated. Analytic solution of the equa-
tion (2.28) would be quite tedious since the coefficients of the
matrix equation are time varying except for the case of constant
celestial longitude rate, A = constant, and constant latitude, L =
constant.

Considerable simplification occurs if we examine the stationary

case where:

L=A=r=r=L=20; A= w,

ie!
giving:
. . 7] [ 1
P wi631nL 0 wy sinL -cosL p €N
- i -, 0 €
w; oSN L P w; Cos L P E
0 Wy ,COS L p wiecosL sinL p €p
2 . :
0 -g 0 rp rw, . sin 2L p SL
2
- i A
L g 0 0 2rmie51nL o) r cosL p | i
- -
(u)wN + Ty W;,C0S L
(u)wE
(2.29)

(u)wD - TD wie51n L

(u) fN - &

R (u)fE +ng
Note that the 2 x 107>
eq., (2.29) from eq. (2.28). . .

Initial condition errors, 8L(0), S8L(0), 6A(0), 81(0), and initial
misalignment errors, EN(O), EE(O), ez(o), are accounted for by taking

the Laplace transformation of equation (2.29):

g criteria must again be applied in obtaining
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. . - -
s wie51nL 0 mie51nL -s cosL ( EN
—wle81nL s —miecosL s 0 EE
0 miecosL s wiecosL s sinL ED
0 -g 0 r s? rw, sin 2L s §L
, ie
g 0 0 —2rwiesinL s szr cosL &X
L . S J
B T,, w, cos L : -
(w) iy + N _ie + €,(0) - cos L 61 (0)
s

(Ww,. + EE(O) + 8L(0)

E
(u)az - TpYie sin L + eD(O) - sin L 8X(0) (2.30)
s
(wE, - Eg + rls SL(0) + SL(0)]+ rw; sin 2L §X(0)
(Wf_ + ng + r cos Lls 6A(0) + 6A(0)] - 2rw,_sinL SL(0)
L. E le
where -

s v Laplace operator

N’ "gr Tpare constant,

Superbar ~ Laplace transformed variable

T

The signal flow diagram corresponding to equation (2.30) is shown in
Figure (2.4).
Note that the characteristic determinant for equation (2.29) is

given by:

4
<1 (2.31)

w, 2
2 2 2, 4 2 Yjec . 2 2
p rcos L(p” + w; ")Ip + 2ug (L + 2 —;~551n L)y p° +w
Thus it is seen that the system modes of oscillation for the
stationary case consist of the Earth rate frequency and the

Foucault modulated Schuler frequencies.
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2.4.1 Navigation and Level Errors for Constant Gyro Drift

Considering the stationary case and letting constant gyro

drift be the sole error source, we have from equation (2.30) that:

. » - - ‘ ' <
s “ieSlnL 0 wie51nL s cosL FEN r(u,wN/s
sinL s w3 oCOSL s 0 ER (u)wE/s
0 miecosL s wieCOSL s sinlL €p = (u)wD/s
2 . -
0 -g 0 rs rw,_sin 2L s §L 0
ie
. 2 -
g 0 0 —2rmie51nL s s“r cosL S 0
(2.32)

Where (u)uwy, (u)wg, and (uw)wp are the constant gyro drift rates asso-
ciated with the north, east, and azimuth gyros, respectively. Be-
cause of the Foucault modulation, equation (2.32) is best solved
via use of an analog or digital computer. The results of such a
solution at latitude = 45° are shown in Figures (2.5), (2.6), and
(2.7). In Fig. (2.7) the level errors were found to be so small
(about 0.01 min/meru) as to be buried in the analog computer noise.
Note that the effect of the Foucault terms is to modulate the
Schuler oscillations at a frequency given by wjesin L (34 hour period
at L = 45°), the vertical projection of earth rate. This modula-
tion arises from the calculation of the accelerometer compensation
terms in eqgs. (2.8) and (2.9) as will be seen when the equations
are rederived, assuming perfect accelerometer compensation. It is
seen from these three figures that the Foucault modulation has
only a second order €ffect on the amplitude of the latitude, lon-
gitude, and azimuth errors, the predominant mode occurring at the
earth rate frequency. On the other hand, for the level errors,

ey and €g, the Foucault modulation is a first order effect.

These results would suggest that for the purposes of design, it
would be convenient to neglect the Foucault modulation, obtain-

ing equations whith are readily solved and which xield solutions
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which, although differing slightly in frequency content, exhibit
approximately the same amplitude information. As indicated by
the computer solutions, this approximation will be a very good
one for the latitude, longitude, and azimuth errors, but a re-
latively poor one for the level errors. Fortunately, the level
errors are of secondary importance for navigational purposes.
Figures (2.8), (2.9), and (2.10) show the effect of a con-
stant east terrestrial longitude rate (& = 3wje) on the naviga-
tion and level error plots for constant gyro drift. At the 45°
latitude this would correspond to a vehicle moving in an east-
erly direction at about 1900 Kt. Comparison with the stationary
case curves (Figures (2.5), (2.6), and (2.7)) indicates that the
lowest modulation freguency has increased from A= wie for the
stationary case to A= 4wje for the moving case. This phenomenon
is easily explained via examination of the characteristic equa-
tion for the moving case. It follows from the derivation of
eq. (2.30) that the system characteristic determinant for arbi-
trary constant longitude rate is found by substituting A for
wie in eg. (2.31):

A = pricos L (p? + A%)[p* + 2ug® (L + 2 2 sin®L)p? + ug']
S .

The system modes are seen to be the space rate mode and Foucault
modulated Schuler frequencies. For this case of X = 4wie the
space rate period is six hours while the Foucault modulation
now occurs with a period of about 8.5 hours instead of the 34
hour period for the stationary case. These six hour and 8.5
hour modes are easily identified in the figures.

Perhaps the most important feature revealed by the compari-
son is the fact that the latitude and azimuth error sensitivi-
ties are reduced from the stationary case by tae factor wie/i:
or in this situation for X = 4uwje, by a factor of four. For
the cases which exhibit a longitude error which grows with time,
namely the responses to (u)wy and (u)wp, the vehicle motion ap-

pears to have little effect on the error growth. On the other
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hand, the sensitivity 6A/(u)wg, which is bounded for the sta-
tionary case, is reduced by the factor wie/i. The level error
sensitivities in response to level gyro drift are seen to remain
unchanged while the level error response to azimuth gyro drift
is seen to emerge from the computer noise. A digital computer
solution has revealed that these error sensitivities, eg/(u)uwp
and eN/(u)wp, have in fact increased by the factor i/wie- Exam-
ination of the signal flow diagram, Figure 2.4, reveals that
the coupling sensitivity between the azimuth and east level loop
is increased by the required factor of A wie. -

An interesting limiting case arises when the vehicle is fly-
ing west with L= ~wjes This case is readily analyzed by setting
wie to zero in Figure 2.4, thereby eliminating the Foucault and
space rate coupling. The level error sensitivities remain un-
changed sans the Foucault modulation, but the latitude, longitude,
and azimuth errors grow in proportion to the product of the drift
rate and time. Specifically, for times greater than a Schuler

period,

L = ('I.I)U)Et
A = -(u)wyt tan L
ep » (wWwyt tan L + (u)uwpt

Thus a maximum navigational error sensitivity of about 1 ﬁIR/hr/
meru drift represents an upper bound on the sensitivity to gyro
drift regardless of vehicle motion.

A similar uncoupling effect occurs for operation near the
equator for arbitrary celestial longitude rate., If we let the
latitude approach zero degrees in Figure 2.4, it is readily seen
that the terms responsible for the Foucault modulation, the
"2rwje sin L" terms, disappear and in addition the north level
loop becomes completely uncoupled from the latitude, azimuth,

and east level loops.
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Since it has been shown that the Foucault modulation of
the Schuler oscillations have only a second order effect on the
navigational errors, it will be useful to obtain analytical ex-
pressions for the system response to gyro drift which are
not complicated by the Foucault modulation. It follows from
the development leading to equations (2.18) and (2.19) that
if the accelerometer compensation is performed without error,
the appropriate equations corresponding to equations (2.18)

and (2.19) for the stationary case are given by:

r ¢l - g eg = =&g + (u)fy - (2.33)
rcos L 8\ +gegy = ng+ (ufg (2.34)
Since simultaneous solution of equations (2.25), (2.26), (2.27),

(2.33), and (2.34) is desired, we have the Laplace transformed
matrix equation:

s wieSinL 0 wjesinL -s cosL ] I ENd
-wj eSink s -wjecosL s 0 €g
0 wjecosL s wjecosL s sinL tp =
0 -g 0 r s? 0 ST
g 0 0 0 s?r cosL | 6T~




(u)aN +

T,,W cosL

N ie
s

+ eN(O) - cosL &)X (0)

(u)wE + EE(O) + 8L (0)

(u)&D -

D

W, i
ie sinL

s

+ eD(O) - sinL 8X(0)
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(W - Eg + rls 6L(0) + 6L(0)]

(WE; + 9g + r cos L [s 81(0) + A (0)]

Eq.

(2.35)

(2.35) represents the Laplace transformed error equation for

a stationary local vertical inertial navigation system in which
If constant

the accelerometer compensation is done withour error.
gyro drift is the sole error source, equation (2.35) reduces to:

. _sinL
w; Sin

1

=W,
le

1

cosL

w.,
1

w. sinkL
e

cosL
e

-5 cosL

s sinL

]

mi

.ml

52r cosL

-

]

(u)u)E
s

(u)wD

s
0

The system characteristic equation is given by the determinant

of the above 5 x 5 matrix:

A =

r2 cos L s(52 + wg)z(s

2

+ w?
le

)

(2.37)

—(u)wN T

(2.36)
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Solution of Eq. (2.36) yields:

_ s2 + oWy coszL wiésin Ls
eN = " " . (u)wN - " ; (u)wE
(s™ + ws)(s + wie) (s” + ws)(s + wie)
w2 in L cos L
_ je St
(Ww
2 2 2 2 D (2.38)
(s + ws)(s + wie)
_ Wi e sin L s _ 2
PP (Wey * (0 wg
(s + wl)(s™ + w, ) 2 2 2 2 ,
s’ ie (s™ + ws)(s +w ie)
wle cos L s
+ (u)wD
2 2 2 2 (2.39)
(s® + ws)(s + wie)
- _ tan L(w2 - w? cnszL) w, COSs L(s2 +Ww 2 spcz L)
€. = s - ie ie s -
D Wwy - (0)wg
2 2 2 2 2 2 2 2
(s® + ws)(s + wie) s(s” + ws)(s 4 wie)
(s2 + Wy + wze sin® L)
+ : (Ww (2.40)
(52 + QQ )(s2 + wz) D
ie s
_ wg 0, sin L L 2
o = s(s? + w2) (s°+w? ) oy ¥ e S— (Wwg
s ie (s“ + wl)(s™ + w, )
s ie
2
wie ws cos L e
+ D (2.41)
s(s2 + wz)(s2 + wz )
s ie
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0 sec L (52 + w? coszL) . w2 w., tan L
- _ s ie s ie
SA = - (u)w,. + (u)w
N 2 E
s2(s2 + wd) (s? + w2)) s(s2 + w)(s? + wl)
s ie s ie
w2 w2 sin L
s 1e (W) w
+ ) D
> 2,2 . 2 (2.42)
s(s” + w; )(s™ + w)
ie s

rhe inverse Laplace transformation of the above equation is

given by:
€, = 1 sin w_t (Ww, - wieSin L
N wg s N - 5 (cos wiet - cos wst) (u)wE
s
Yije
- — sin L cos L sin wiet (u)wD (2.43)
Ys
wiesin\L 1
€ = Qz (cos wiet - CcOS wst)(u)wN + Gs sin mst(u)wE
s
miecos L
+ ————:5——- (cos wiet - cos wst) (u)wD (2.44)
s
tan- L
- — _ sec L _
ED = w. sin miet (u)wN —_ (1 cos wiet) (u)wE
ie ie
+ 1 sin w, t A
Wie ie (u)wD (2,45)
I :
8L = Yy (1 cos wiet) [sin L (u)wN + cos L (u)wD]
ie
+ L1 sin w, t Wo (2.46)
w ie E .

ie
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1 .2 .
A 2= - =—— (W, t cos L + sin” L sin w, _t) (Ww
“Yje 1e cos L 1e N
tan L
+ — (1 - cos wiet) (u)wE
ie
sin L
+ Wi (wiet - sin wiet) (u)wD (2.47)

Where it was noted that wg >> wy allowing us to neglect certain

ie’

terms whose coeficients were of the form Wi and wieZ
w 2 °*
Vg s

If equations (2,46) and (2.47) are compared with the computer
generated solutions of Figure (2.5), it is seen that the
simplified expressions for latitude and longitude do not con-
tain the small amplitude Schuler-Foucault terms. However, the
dominating earth rate mode is accurately specified by the simpli-
fied equations. Thus equation (2.35) will be taken as a repre-
sentative error model for the stationary local vertical inertial
navigator in response to constant gyro drift,

Note that one can, by careful examination of the signal flow
diagram in Figure (2.4), predict the response to the various
error sources by inspection. For instance, if we take the case of
EN(eq. 2.43), one expects to see that ‘

o€
N = l— sin w_t (Ww
w [ N
a(u)wN s

since the Eérth rate cross coupling from the north loop to the
east loop (wie sin L EN) is attenuated by the east level loop
before being coupling back to the north loop (wie sin L EE).

Thus the response to &, to (u)wN is seen by examination of the

N
response of the following system:
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(u)wN + 1] -
s _ S N
2
us
s
= (0w 1 .
Thus €,. = N €, = == sin w_t
N ;—2*:“-)-‘-2- $ N ws .8

Root sum squared plots of egs. (2,43), (2.44), (2.45), (2.46),
and (2.47) are shown in Figure 2,11 for the case of equal gyro

drift for each gyro:
(u)wN = (u)wE = (u)wD = (Ww

The analytic expressions used in Figure 2,11 are given by:

e (u)w
N = € = emmme—
RSS Epss W lsinwstl (2.48)
SL = ¢ (Ww 1/2
RSS = “Dpog = W2 up. (1 - cos wy t) _ (2.49)
sec L
(u 2 2
$Apss = :)w [wi, t° + 2 (l-cos wiet)1}/?, at L = 45° (2.50)
ie :

Note that the level, azimuth, and latitude errors are bounded,
but that the longitude error increases withour bound with a rate

approximately given by the gyro drift uncertainty, (u)w.
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Figure 2.11vLocal Vertical I.N.S. Navigation Errors (Perfect

Coriolis Compensation) "~ Root Sum Squared
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2.4.2 Navigation and Level Errors for Accelerometer Bias

If accelerometer bias is the sole error source, we have from
equation (2.30) that:

1. 4 -
s wie51nL 0 wie51nL -5 cos L ey 0
—wie51nL S —wiecosL s 0 EE 0
0 wlecosL s wiecosL s sin L €p 0 (2.51
2 o : =
0 -g 0 r s rw; sin 2L s L () £
2 _ s
g 0 0 ~2rw. _sinL s s“r cos L )
ie (u) £
L —
- - s
B a

Where (u)fy and (u)fgp are the constant north and east accelerometer
biasses, respectively. Figures 2.12 and 2.13 show the results of
a computer solution of eqg. (2.51). Note that the Schuler mode pre-
dominates since the accelerometer bias directly excites the rela-
tively "high gain" level loops. The Schuler oscillations are modu-
lated at the Foucault mode frequency of 1 cycle/36 hours. The maxi-
mum sensitivity of latitude error to accelerometer bias is seen to
be in the range of 7 ﬁzﬁ/milli g bias. Similarly, the longitude
sensitivity has a maximum value of about 9 ﬁzﬁ/milli g bias.

If the effect of the accelerometer compensation is neglected,
as was done in obtaining analytic solutions for gyro drift (eq.
2.36), the following solutions are obtained:
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Wfg (2.52)

En = (1L - coswst) '"EF" .
(u)fN (2.53)

€g = -1 - coswst) .
(u)fE 2. 54)

€p = tan 1, (1 - coswst) 3 (2.

(u)f
§L = (1 - cosw_t) N (2.55)
(u)fﬁ

8\ = sec L (1 - coswst) m—g—— (2,56)

Note that these solutions neglect the effects of the Foucault modu-
lations, first order effects. 1In addition, the cross coupling ef-
fects shown in Figures 2.12 and 2.13 are completely neglected. 1If,
however, the above analytic solutions are compared with the compu-
ter generated solutions, it is concluded that neglecting the ac-
celerometer compensation yeilds results which are quite accurate
for periods of time up to about one Schuler period (84 minutes).
Thus if one is interested in modeling a local vertical inertial
navigation system for short periods of time, which would be the
case for an aided inertial system, the simplified model obtained
by neglecting the accelerometer compensation would be perfectly
adequate.

Figure 2.14 shows the effect of a 1900 Kt. east terrestrial
velocity on the error response to accelerometer bias. The Foucault
modulating frequency is increased by a factor of 5;— = 4 and the
error sensitivities are seen to remain unchanged. *€In the limit-
ing case mentioned previously when L= -wje, the Foucault modula-
tion disappears completely leaving a pure Schuler oscillation.

In addition, the cross coupling is eliminated and the response is
accurately described by eguations (2.52) through (2.56).
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2.4,3 Latitude and Longitude Rate Errors

Figure 2.15 shows computer derived plots of latitude and
longitude rate errors for the case of constant gyro drift and ac-
celerometer bias. These errors are easily related to the north

and east velocity errors since from Pg.44, for A= Wie

e

GVN r 61,.: (2.57)

r A cos L : (2.58)

e

GVE

where

dvyy v north velocity error

Svg v east velocity error

It is seen, therefore, that the north and east peak velocity sensi-
tivity to level gyro drift is about 1.35 Il-ﬁ%nL/meru drift (1 n.m./hr
= 1.7 ft/sec), while the sensitivity to azimuth gyro drift is about

0.75 n};?'/meru drift. Peak velocity errors due to accelerometer

bias are seen to be about 1.25 nﬁ?'/10'4g bias. Note the particu-
larly interesting effect of the three system modes of oscillation
in response to level gyro dirft.

Latitude and longitude rate error plots are shown in Figure
2.16 for the case of a constant east terrestrial velocity of 1900
Kt. Comparison of Figures 2.14 and 2.15 reveals that the rate
error magnitudes are unaffected by the vehicle motion, a result
which is not too surprising since the level error magnitudes were
previously shown to be virtually unaffected by vehicle motion.
Note that for the case of this rather high terrestrial longitude

rate, Eq. (2.58) does not yield the total east velocity error. In
particular, for A # Wigr the appropriate expression for the east

velocity error is given by:

GVE =r 6%f cos L - r & 8L sin L
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2.4.4 Initial Condition Errors

Figures 2.17 through 2,21 show computer solutions of the
error response to initial north level, east level, latitude, lati-
tude rate, and longitude rate errors, respectively. Please note
that the response is shown for negative initial condition errors.
The response to initial longitude error is not shown because, as
seen in Figure 2,4, longitude is uncoupled from the other compu-
tation loops. Thus the system response to initial longitude er-
ror is simply:

sv =[S en(0) at (2.59)
A constant initial condition error therefore results in a longi-
tude error growth rate of 1 EZB/hr/ﬁzi uncertainty. The response
to initial azimuth error is also not shown since it is seen from
Figure 2.4 that the response is identical to that due to constant
east gyro drift. Thus Figure 2.6 and the (u)wg response of Fig-
ure 2,15 can be used with the sensitivity given by:
ep(0) w;, cos L cos L

le x =
(W) ag = 3777 = 0.206

min/min ep(0)
Mfin/meru (u)wE

for the case of Figure 2.6, and the same numerical sensitivity
with the appropriate units for the case of Figure 2.15.

For the purposes of design, it is convenient to obtain analy-
tic expressions for the response to initial condition errors. As
before, this solution is most conveniently effected by solving the
matrix equation 2,30 with the Foucault modes omitted. The results
of such a solution for arbitrary finite constant celestial longi-
tude rate, A = constant, is given by the following equation:

x = A x(0) (2.60)
where
x = {ens €gr €ps 6L, 8A, OL, 81},

x(0) = {en(0), eg(0), ep(0), SL(0), &x(0), 8L(0), 8A(0)},

and
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Figure 2.21 ~ System Errors for Initial Longitude Rate Errors
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